Lời giải tại link sau:
https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duongcmr-dfrac1a2bcdfrac1b2acdfrac1c2abledfracabc2abc.193908584039
Lời giải tại link sau:
https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duongcmr-dfrac1a2bcdfrac1b2acdfrac1c2abledfracabc2abc.193908584039
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a,b,c là các số dương
CMR : \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
Cho a,b,c\(\ge0\), a+b+c=1
CMR: \(0\le ab+ac+bc-2abc\le\dfrac{7}{27}\)
Cho a, b, c > 0 thoã mãn: ab + bc + ca = 3. CMR: \(\dfrac{1}{1+a^2\left(b+c\right)}+\dfrac{1}{1+b^2\left(c+a\right)}+\dfrac{1}{1+c^2\left(a+b\right)}\le\dfrac{3}{abc}\)
Cho a, b, c là các số dương thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR: \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ba}\le\dfrac{a+b+c}{4}\)
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
cho 3 số thực không âm a,b,c sao cho a2+b2+c2=1 . cmr \(\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\) (giải chi tiết với ạ !!!!)
1)Cho a,b,c lần lượt là độ dài các cạnh BC,CA,AB của tam giác ABC. CMR \(\sin\dfrac{A}{2}\le\dfrac{a}{2\sqrt{bc}}\)
2)Cho a,b,c,d là các số thực tổng bằng 1. CMR: \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\ge\dfrac{1}{2}\)
Cho a,b,c\(\in R^+\) thõa mãn \(a+b+c=1\). CMR :
\(\dfrac{a-bc}{a+bc}+\dfrac{b-ca}{b+ca}+\dfrac{c-ab}{c+ab}\le\dfrac{3}{2}\)