Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Thị Kim Dung

Cho a,b,c\(\in R^+\) thõa mãn \(a+b+c=1\). CMR :

\(\dfrac{a-bc}{a+bc}+\dfrac{b-ca}{b+ca}+\dfrac{c-ab}{c+ab}\le\dfrac{3}{2}\)

Akai Haruma
8 tháng 12 2017 lúc 23:42

Lời giải:

Ta có:

\(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\leq \frac{3}{2}\)

\(\Leftrightarrow \frac{a-bc}{a(a+b+c)+bc}+\frac{b-ac}{b(a+b+c)+ca}+\frac{c-ab}{c(a+b+c)+ab}\leq \frac{3}{2}\)

\(\Leftrightarrow \frac{a-bc}{(a+b)(a+c)}+\frac{b-ac}{(b+a)(b+c)}+\frac{c-ab}{(c+a)(c+b)}\leq \frac{3}{2}\)

\(\Leftrightarrow \frac{(a-bc)(b+c)+(b-ac)(a+c)+(c-ab)(a+b)}{(a+b)(b+c)(c+a)}\leq \frac{3}{2}\)

\(\Leftrightarrow (a-bc)(b+c)+(b-ac)(a+c)+(c-ab)(a+b)\leq \frac{3}{2}(a+b)(b+c)(c+a)\)

\(\Leftrightarrow 2(ab+bc+ac)-[ab(a+b)+bc(b+c)+ac(a+c)]\leq \frac{3}{2}(1-a)(1-b)(1-c)\)

\(\Leftrightarrow 4(ab+bc+ac)-2[ab(a+b)+bc(b+c)+ac(c+a)]\leq 3(ab+bc+ac-abc)\)

\(\Leftrightarrow ab+bc+ac+3abc\leq 2[ab(a+b)+bc(b+c)+ca(c+a)]\)

\(\Leftrightarrow ab+bc+ac+9abc\leq 2[ab(a+b+c)+bc(a+b+c)+ac(a+b+c)]\)

\(\Leftrightarrow ab+bc+ac+9abc\leq 2(a+b+c)(ab+bc+ac)\)

\(\Leftrightarrow ab+bc+ac+9abc\leq 2(ab+bc+ac)\)

\(\Leftrightarrow 9abc\leq ab+bc+ac\)

\(\Leftrightarrow 9abc\leq (a+b+c)(ab+bc+ac)\)

BĐT trên luôn đúng do theo BĐT AM-GM ta có:

\((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)

Vậy ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)



Các câu hỏi tương tự
dia fic
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Yến Tử
Xem chi tiết
Sendaris Thalleous
Xem chi tiết
Niii
Xem chi tiết
Uchiha Sasuke
Xem chi tiết
Nguyễn Anh Kim Hân
Xem chi tiết