Lời giải:
Áp dụng BĐT Svac-xơ ta có:
\(\frac{1}{a}+\frac{4}{b}+\frac{9}{c}=\frac{1^2}{a}+\frac{2^2}{b}+\frac{3^2}{c}\geq \frac{(1+2+3)^2}{a+b+c}=\frac{36}{a+b+c}\)
Ta có đpcm
Dấu "=" xảy ra khi \(\frac{1}{a}=\frac{2}{b}=\frac{3}{c}\)
Lời giải:
Áp dụng BĐT Svac-xơ ta có:
\(\frac{1}{a}+\frac{4}{b}+\frac{9}{c}=\frac{1^2}{a}+\frac{2^2}{b}+\frac{3^2}{c}\geq \frac{(1+2+3)^2}{a+b+c}=\frac{36}{a+b+c}\)
Ta có đpcm
Dấu "=" xảy ra khi \(\frac{1}{a}=\frac{2}{b}=\frac{3}{c}\)
cho a,b,c>0. cmr:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)
Cho a,b,c > 0 . Cmr:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}+\dfrac{4}{a+2b+c}\)
Cho a,b,c là các số dương. CM BĐT \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
Cho a, b, c >0. CMR :
\(\left(1+abc\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\ge a+b+c+6\)
Cho a,b,c là các số thực dương CMR : \(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
chứng minh BĐT
\(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{9}{2}\)
Cho a,b,c >0 và a2 + b2 + c2 = 3 CMR :
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{9}{a+b+c}\)
Cho a,b,c >0. CMR: \(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\ge\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Cho a, b, c>0 và a+b+c\(\ge3\)
Cmr:
\(\dfrac{a^2}{a+\sqrt{bc}}+\dfrac{b^2}{b+\sqrt{ac}}+\dfrac{c^2}{c+\sqrt{ab}}\ge\dfrac{3}{2}\)