Ủa bài này hỏi rồi hỏi gì nữa?
Ủa bài này hỏi rồi hỏi gì nữa?
Cho các số thực dương a,b. CM BĐT :
\(\dfrac{2ab}{a+b}+\sqrt{\dfrac{a^2+b^2}{2}}\ge\sqrt{ab}+\dfrac{a+b}{2}\)
Cho các số thực dương a,b. CM BĐT ;
\(\dfrac{a^2b}{2a^3+b^3}+\dfrac{2}{3}\ge\dfrac{a^2+2ab}{2a^2+b^2}\)
Cho a,b,c là các số thực dương CMR : \(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}++\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho a, b, c là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\). Chứng minh: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\)
cho các số thực dương a,b,c chứng minh:\(\dfrac{a^3}{13a^2+5b^2}+\dfrac{b^3}{13b^2+5c^2}+\dfrac{c^3}{13c^2+5a^2}\ge\dfrac{a+b+c}{18}\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
chứng minh BĐT
\(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{9}{2}\)