Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Trên tia đối của tia NM lấy điểm E sao cho NE=NM. Chứng minh tứ giác MECB là hình bình hành.
c) Đường thẳng BE cắt đoạn thẳng NC tại F. Chứng minh AC=6NF.
d) Tìm điều kiện của tam giác ABC để hình bình hành MECB là hình vuông.
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Trên tia đối của tia NM lấy điểm E sao cho NE=NM. Chứng minh tứ giác MECB là hình bình hành.
c) Đường thẳng BE cắt đoạn thẳng NC tại F. Chứng minh AC=6NF.
d) Tìm điều kiện của tam giác ABC để hình bình hành MECB là hình vuông.
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Trên tia đối của tia NM lấy điểm E sao cho NE=NM. Chứng minh tứ giác MECB là hình bình hành.
c) Đường thẳng BE cắt đoạn thẳng NC tại F. Chứng minh AC=6NF.
d) Tìm điều kiện của tam giác ABC để hình bình hành MECB là hình vuông.
Cho tam giác ABC, một đường thẳng song song BC cắt AB, AC lần lượt tại D và E. Trên tí đối tia CA lấy điểm F sao cho CF = BD, gọi M là giao điểm DF và BC. Chứng minh \(\dfrac{MD}{MF}=\dfrac{AC}{AB}\)
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
Cho tam giac ABC có đường thẳng d đi qua B. Từ diểm E bất kì trên AC kẻ đường thẳng song song AB AC lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Chứng minh:
a)AFN \(\sim\) MDC
b)AN//MK