Cho tam giac ABC có đường thẳng d đi qua B. Từ diểm E bất kì trên AC kẻ đường thẳng song song AB AC lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Chứng minh:
a)AFN \(\sim\) MDC
b)AN//MK
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Cho tam giác ABC cân tại A, E thuộc AB. Trên tia đối tia CA lấy F sao cho CF=BE. Vẽ Bx vuông góc AB, Cy vuông góc AB. Gọi I giao điểm Bx và Cy.
a) Chứng minh tam giác IEF cân.
b) Qua E vẽ đường thnag song song với BC cắt AC tại D. Chứng minh CD=CF
c) H giao điểm EF và BC. Chứng minh E, F đối xứng qua IH.
Cho tam giác ABC. D là một điểm trên cạnh BC, qua D kẻ các đường thẳng song song vs AB, AC chúng cắt AB,AC lần lượt tại E và F
chứng minh: \(\dfrac{AE}{AB}+\dfrac{AF}{AC}=1\)
Cho tam giác ABC có AB=12cm , AC=15cm, BC=q6cm. Trên cạnh AB lấy điểm M sao cho AM=3cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N, cắt trung tuyến AI tại K.
a/ Tính độ dài MN
b/ Chứng minh K là trung điểm của MN
c/ Trên tia MN lấy điểm P sao cho MP=8cm. Nối PI cắt AC tại Q. Chững minh tam giác QIC đồng dạng với tam giác AMN
Cho tam giác ABC vuông tại A ( AB < AC ) đường cao AH . Trên nưa r mặt phẳng bờ là dường thẳng BC có chứa điểm A , vẽ hình vuông AHKI . Gọi F là giao điểm của AC và KI . Đường thẳng qua F và song song với AB cắt đường thẳng qua B và song song với AC tại E
a ) Cho AH =2cm . Tính diện tích hình vuông AHKI
b ) Chứng minh : ABEF là hình vuông
c ) CM : HI//EK
d ) CM : 3 đường thẳng AE , BF , HI đồng qui
Cho tam giác ABC vuông tại A ( AB < AC ) đường cao AH . Trên nưa r mặt phẳng bờ là dường thẳng BC có chứa điểm A , vẽ hình vuông AHKI . Gọi F là giao điểm của AC và KI . Đường thẳng qua F và song song với AB cắt đường thẳng qua B và song song với AC tại E
a ) Cho AH =2cm . Tính diện tích hình vuông AHKI
b ) Chứng minh : ABEF là hình vuông
c ) CM : HI//EK
d ) CM : 3 đường thẳng AE , BF , HI đồng qui