Cho a,b,c thỏa mãn: a+b+c=12. Chứng minh rằng:
\(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)
Cho 3 số thực dương thỏa mãn: \(a^3b^3 +b^3c^3+c^3a^3=3\). Chứng minh rằng: \(a^7+b^7+c^7\ge3\)
Cho a, b, c là các số thực dương, thỏa mãn a + b+ c=3. Chứng minh rằng:
\(\frac{a^2}{\sqrt{4a+3b+2}}+\frac{b^2}{\sqrt{4b+3c+2}}+\frac{c^2}{\sqrt{4c+3a+2}}\ge1\)
Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\dfrac{3a^3+7b^3}{2a+3b}+\dfrac{3b^3+7c^3}{2b+3c}+\dfrac{3c^3+7a^3}{2c+3a}\ge3\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
Cho a, b, c > 0. Chứng minh rằng: \(M=\dfrac{5b^3-a^3}{ab+3b^2}+\dfrac{5c^3-b^3}{bc+3c^2}+\dfrac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
Cho 3 số thực dương a,b,c thỏa mãn : ab+bc+ca = 3. CMR\(\dfrac{1+3a}{1+b^2}+\dfrac{1+3b}{1+c^2}+\dfrac{1+3c}{1+a^2}\ge6\)
Cho a, b, c dương thỏa abc = 1. Chứng minh: \(\frac{1}{a^3\left(7b+3c\right)}+\frac{1}{b^3\left(7c+3a\right)}+\frac{1}{c^3\left(7a+3b\right)}\ge\frac{1}{10}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
1.Cho a,b,c ∈ℝ+ và abc = 1 Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
2: Cho a, b ,c là các số thực dương thỏa mãn abc = ab + bc + ca.
Chứng minh :\(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}< \dfrac{3}{16}\)
(trích đề TS vào lớp 10 chuyên Toán Đại học Vinh 2002 – 2003)
Bài 3: Cho x,y là các số thực dương thỏa mãn x + y = 1.
Tìm GTNN của biểu thức A = \(\dfrac{1}{x^3+xy+y^3}+\dfrac{4x^2y^2+2}{xy}\)
4: Cho a, b, c là những số thực dương thỏa mãn a + b + c = \(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
Chứng minh rằng: \(ab+bc+ca\le3\)
1, Cho a, b, c > 0 thỏa mãn abc = ab + bc + ca
Chứng minh rằng \(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}\le\dfrac{3}{16}\)
2, Cho x, y, z > 0 thỏa mãn xy + yz + zx = xyz. Tìm GTLN của
\(P=\dfrac{1}{x+2y+3}+\dfrac{1}{y+2z+3}+\dfrac{1}{z+2x+3}\)