Cho tam giác ABC nhọn AB<AC và đường cao BE, CF cắt nhau tại H
a) Chứng minh : tam giác ABE ~ tam giác ACF và AF.AB=AE.AC
b) Chứng minh : FA.FB=FH.FC
c) Đường thẳng qua B và song song với FE cắt AC tại M . Chứng minh rằng : tam giác BCF ~tam giác MBE
d) Gọi I là trung điểm cảu BM , D là giao điểm của BN , D là giao điểm của EI và BC . Chứng minh rằng : bà điểm A, H ,D thẳng hàng
MK làm được câu a rồi còn câu b c, d không cần làm chi tiết chỉ cần làm ngắn gọn là đc
3. cho tam giác ABC ( AB<AC) hai đường cao BEvà CFgặp nhau tại H, các đường thẳng kẻ từ B song song vs CF và từ C song song vs BEgặp nhau tại D . Chứng minh :
a) tam giác ABE~tam giác ACF
b) AE.AC=AB.AF
c) gọi I là trung điểm của BC . Chứng minh H, I , D thẳng hàng
Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh rằng: tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) Chứng minh rằng: BH.BE = BD.BC
c) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DEF, rồi suy ra: NH.AD = AN.HD.
mọi người giúp em giải câu c thôi ạ
Cho tam giác nhọn ABC có ba đường cao AD, BE và CF cắt nhau tại H.
a) Chứng minh: ∆ABE ∽ ∆ACF, từ đó suy ra AB.AF = AC.AE.
b) Chứng minh: DB . DC = DA.DH
c) Gọi I là trung điểm của BC. Đường thẳng vuông hóc với IH tại H cắt AB và AC lần lượt tại M và N. Chứng minh: ∆AHN ∽ ∆BIH và H là trung điểm của MN.
Bài 1. Cho △ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a. Cm: △AFH ∼ △ ADB
b. Cm: BH . HE = CH . HF
c. Cm: △AEF ~ △ABC
d. Gọi I là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường AC tại N. Chứng minh: MH = HN.
Bài 2. Cho △ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE,CF cắt nhau tại H.
a. Cm: △CFB ~ △ADB
b. Cm: AF . AB = AH . AD
c. Cm: △BDF ~ △BAC
d. Gọi M là trung điểm của BC. Chứng minh: Góc EDF = góc EMF.
Cho tam giác ABC vuông tại A; có AB<AC.M là trung điểm BC.Gọi D là điểm đối xứng với A qua M,E là điểm đối xứng với A qua đường thẳng BC.
a)Chứng minh AC=BD
b)Tứ giác BCDE là hình gì?
c)Gọi H là giao điểm AE và BC.Vẽ tia Ax song song Hd và cắt BC tại I.Chứng minh DI=EH
Cho tam giác ABC vuông tại A có AB < AC và đường cao AH . Trên tia HC lấy điểm D sao cho HD = HA, vẽ hình vuông AHDE. Gọi F là giao điểm của DE và AC. Đường thẳng qua F song song với AB và đường thẳng qua B song song với AC cắt nhau tại điểm G. Chứng minh ba đường thẳng AG, BF, HE đồng quy.
Cho tam giác ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh ΔBFH đồng dạng với ΔCEH và FA.BH=FH.AC
b) Gọi I là trung điểm của BC và K là điểm đối xứng với H qua I. Chứng minh ΔAKC đồng dạng ΔAFH.
c) AK cắt HC tại O. Lấy điểm thuộc đoạn thẳng AC sao cho EF // OM. Chứng minh HM vuông góc với AD.
Câu a có thể không cần nhưng mình xin đáp án câu b, c với ạ.
1,Cho tam giác ABC nhọn với H là trực tâm. Gọi M là trung điểm của BC. Các đường trung trực của AC và BC cắt nhau tại O. Chứng minh: AH = 2OM
2, Cho hình thang ABCD có đáy lớn là CD. Qua A kẻ đường thẳng AK song song BC ( K thuộc CD ). Qua điểm B kẻ đường thẳng BI song song AD ( I thuộc CD ). BI cắt AC tại F; AK cắt BD tại E. Chứng minh rằng:
a, EF song song AB
b, AB2 = CD.EF