Cho a,b,c là độ dài 3 cạnh của 1 tam giác. CMR:
\(\dfrac{4a}{b+c-a}+\dfrac{9b}{c+a-b}+\dfrac{16c}{a+b-c}\ge26\)
Cho tam giác ABC có chu vi bằng 2. Kí hiệu a, b, c, là độ dài ba cạnh của tam giác.Tìm giá trị nhỏ nhất của biểu thức
\(S=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
Gíup mình với mọi người !!!!!
Cho a,b,c là độ dài 3 cạnh của 1 tam giác . Cmr 1<\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
1/cho số a >0 tìm GTNN của P = 2a +\(\frac{4}{a}\)+\(\frac{16}{a+2}\)
2/ cho a,b,c là số thực ϵ [0;\(\frac{1}{4}\)) chứng minh:
\(\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
3/ cho các số dương a,b,c tỏa abc = 1. Chứng minh
\(\frac{1}{a^2c+b^2c+1}+\frac{1}{b^2a+c^2a+1}+\frac{1}{c^2b+a^2b+1}\le1\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm GTNN của biểu thức
\(P=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{6abc}{ab+bc+ca}\)
Cho \(a,b,c>0\) \(a+b+c=3\) . Tìm GTNN của \(A=\frac{a^3}{b^3+8}+\frac{b^3}{c^3+8}+\frac{c^3}{a^3+8}\)
Cho các số dương a,b,c biết ab+bc+ca=3
Tìm GTNN của \(\frac{1}{b\left(a+b\right)}+\frac{1}{c\left(b+c\right)}+\frac{1}{a\left(c+a\right)}\)
cho a,b,c > 0 thỏa mãn \(a+b+c\le\frac{3}{2}\)
Tìm GTNN của \(A=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
Cho ba số thực dương a; b và c thỏa mãn :\(a+b+c=3\). Tìm giá trị lớn nhất của biểu thức sau:
\(P=\sqrt{9a+16b}+\sqrt{9b+16c}+\sqrt{9c+16a}\)