\(2c+b=abc\Rightarrow a=\frac{2c+b}{bc}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) ; \(2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\ge\frac{4}{b}\) ; \(3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\ge\frac{6}{a}\)
\(\Rightarrow S\ge\frac{6}{a}+\frac{4}{b}+\frac{2}{c}=\frac{6}{a}+\frac{2\left(2c+b\right)}{bc}=\frac{6}{a}+2a\ge2\sqrt{\frac{12a}{a}}=4\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)