Cho các số thực dương a,b,c thỏa mãn abc=1.Chứng minh rằng:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4+c^3+ac+2}}\le\sqrt{3}\)
Cho a, b, c là các số không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+a+b}+\frac{\sqrt{c}}{1+a+b+c}\le\sqrt{2}\)
Cho các số thực dương a,b,c thỏa mãn \(a+b+c=1\)
Chứng minh rằng \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Cho các số dương a,b,c thỏa mãn a+b+c=1.Chứng minh rằng
\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
Cho 3 số thực dương a,b,c thoả mãn điều kiện:
\(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Chứng minh rằng:
\(a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Cho các số thực dương a, b, c > 0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh rằng \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)