Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Angela jolie

Cho a,b,c là các số dương thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\). CMR: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{1}{2}\left(ab+ac+bc\right)\ge3\)

Nguyễn Việt Lâm
20 tháng 10 2019 lúc 13:43

\(P=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\) ; \(Q=\frac{1}{2}\left(ab+ac+bc\right)\)

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{1}{2}ab\)

Tương tự và cộng lại: \(P\ge a+b+c-Q\Rightarrow P+Q\ge a+b+c\)

Mặt khác \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow a+b+c\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\ge\frac{9}{3}=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Doãn Hoài Trang
Xem chi tiết
ahihi
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Vũ Cao cườngf ff
Xem chi tiết
Lê Đình Quân
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Mai Thị Loan
Xem chi tiết
Đặng Thanh Mai
Xem chi tiết
Phuong Tran
Xem chi tiết