Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{b^2+c^2}{a^2}+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\geq \frac{b^2+c^2}{a^2}+a^2.\frac{4}{b^2+c^2}(1)\)
Áp dụng BĐT AM-GM:
\(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2}\geq 2\)
\(\frac{3a^2}{b^2+c^2}\geq 3\) do $a^2\geq b^2+c^2$
$\Rightarrow \frac{b^2+c^2}{a^2}+\frac{4a^2}{b^2+c^2}\geq 5(2)$
Từ $(1);(2)\Rightarrow P\geq 5$ hay $P_{\min}=5$
Dấu "=" xảy ra khi $b=c=\frac{a}{\sqrt{2}}$