a)\(\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\) tương tự ta có ĐPCM
b)chính nó là BĐT Schur bậc 3 cách c/m nhiều vô kể
a)\(\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\) tương tự ta có ĐPCM
b)chính nó là BĐT Schur bậc 3 cách c/m nhiều vô kể
Cho a,b,c là độ dài ba cạnh của một tam giác , chứng minh rằng :
\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
Chứng minh rằng nếu :
\(\dfrac{bz+cy}{x\left(-ax+by+cz\right)}\) = \(\dfrac{cx+az}{y\left(ax-by+cz\right)}\) = \(\dfrac{ay+bx}{z\left(ax+by-cz\right)}\)
thì : \(\dfrac{x}{a\left(b^2+c^2-a^2\right)}\) = \(\dfrac{y}{b\left(a^2+c^2-b^2\right)}\) = \(\dfrac{z}{c\left(a^2+b^2-c^2\right)}\)
Help me
Cho các số thực a,b,c đôi một khác nhau thỏa mãn \(\left(a-b\right)\sqrt[3]{1-c^3}+\left(b-c\right)\sqrt[3]{1-a^3}+\left(c-a\right)\sqrt[3]{1-b^3}=0\)
Chứng minh rằng \(\sqrt[3]{\left(1-a^3\right)\left(1-b^3\right)\left(1-c^3\right)}+abc=1\)
1. Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng \(a^2\) chia cho 5 dư 1
2. Rút gọn biểu thức : \(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
3. Chứng minh hằng đẳng thức: \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Thực hiện phép tính :
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
Tìm x, y, z thỏa \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)\)
Tìm min \(K=a^3+b^3+c^3-3abc +3ab-3c+5\)
Cho a-b-c=2
Tính M=\(\frac{a^3-b^3-c^3-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(c+a\right)^2}\)
Giúp mình nhé mình đang cần gấp. Thanks các bạn
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
Rút gọn:
a) P = \(\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ca}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
b) Q = \(\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x+\frac{1}{x^3}}\)
Giúp mik nhé!