Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thu Phương

1. Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng \(a^2\) chia cho 5 dư 1

2. Rút gọn biểu thức : \(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

3. Chứng minh hằng đẳng thức: \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Trần Việt Linh
6 tháng 8 2016 lúc 9:56

\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)

 

Isolde Moria
6 tháng 8 2016 lúc 10:03

a)

 Ta có

a chia 5 dư 4

=> a=5k+4 ( k là số tự nhiên )

\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)

Vì 25k^2 chia hết cho 5

    40k chia hết cho 5

    16 chia 5 dư 1

=> đpcm

2) Ta có

\(12=\frac{5^2-1}{2}\)

Thay vào biểu thức ta có

\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)

\(\Rightarrow P=\frac{5^{16}-1}{2}\)

3)

\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

 


Các câu hỏi tương tự
namblue
Xem chi tiết
Người bí ẩn
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
minh anh
Xem chi tiết
Trung Luyện Viết
Xem chi tiết
phan thị minh anh
Xem chi tiết
Mai Xuân Phong
Xem chi tiết
Trương Nguyên Hạo
Xem chi tiết
Liễu Nguyễn Thị
Xem chi tiết