Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
=> \(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)
\(\dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)
\(\dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)
\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
\(=\left(\dfrac{a+b}{a}\right)\left(\dfrac{b+c}{b}\right)\left(\dfrac{c+a}{c}\right)\)
\(=\dfrac{2c}{a}.\dfrac{2a}{b}.\dfrac{2b}{c}=2.2.2=8\)