\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)
\(\Rightarrow\dfrac{a+b-c}{c}+2=\dfrac{a+c-b}{b}+2=\dfrac{b+c-a}{a}+2\)
\(\Rightarrow\dfrac{a+b-c}{c}+\dfrac{2c}{2}=\dfrac{a+c-b}{b}+\dfrac{2b}{b}=\dfrac{b+c-a}{a}+\dfrac{2a}{a}\)
\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+c+b}{b}=\dfrac{b+c+a}{a}\)
\(\Rightarrow a=b=c\) Thay vào A ta được :
\(A=\dfrac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a.a.a}=\dfrac{2a.2a.2a}{a^3}=\dfrac{8.a^3}{a^3}=8\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{c+b+a}=\dfrac{2a+2b+2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a+b-c}{c}=2\\\dfrac{a+c-b}{b}=2\\\dfrac{b+c-a}{a}=2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b-c=2c\\a+c-b=2b\\b+c-a=2a\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b=2c+c\\a+c=2b+b\\b+c=2a+a\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b=3c\\a+c=3b\\b+c=3a\end{matrix}\right.\)
Ta có :
\(A=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\\ \Rightarrow A=\dfrac{3c\cdot3a\cdot3b}{abc}=\dfrac{27abc}{abc}=27\)