Đề thiếu điều kiện \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\) nữa đấy
Ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
\(=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}\)
\(=\dfrac{a+b+c}{a+b+c}\)
\(=1\)
Với \(\dfrac{a+b-c}{c}=1\)
\(\Rightarrow a+b-c=c\)
\(\Rightarrow a+b=2c\left(1\right)\)
Với \(\dfrac{b+c-a}{a}=1\)
\(\Rightarrow b+c-a=a\)
\(\Rightarrow b+c=2a\left(2\right)\)
Với \(\dfrac{c+a-b}{b}=1\)
\(\Rightarrow c+a-b=b\)
\(\Rightarrow c+a=2b\left(3\right)\)
Ta lại có:
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{b}{b}+\dfrac{a}{b}\right)\left(\dfrac{c}{c}+\dfrac{b}{c}\right)\left(\dfrac{a}{a}+\dfrac{c}{a}\right)\)
\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)
Thay (1) , (2) và (3) vào ta được
\(=\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\)
\(=\dfrac{8abc}{abc}\)
\(=8\)