Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Cho a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)
Tính \(A=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
cho các số a,b,c khác 0, sao cho \(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\)
Tính P=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
a) Cho a,b,c,d >0 và dãy tỉ số :\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính :P=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
b)Tìm giá trị nguyên dương của x và y sao cho:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
hộ tui vs các chế
Cho các số a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)
Tính giá trị của biểu thức \(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho \(abc\ne0\) và \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính \(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
Bài 1:
a) Cho a(y+z) = b(z+c) = c(x+y) Tính: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-c}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
b) \(Cho\dfrac{a}{2014}=\dfrac{b}{2015}=\dfrac{c}{2016}cm:4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
c) \(\dfrac{a}{a'}+\dfrac{b'}{b}=1\) và \(\dfrac{b}{b'}+\dfrac{c'}{c}=1\)
cm: abc+a'b'c'=0
bài 4:
a) \(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\) Tính: \(\dfrac{x}{y}\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) Tính P = \(\dfrac{xy+yz+xz}{x^2+y^2-z^2}\)
c) \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)
Tính : P = \(\dfrac{a+b}{c+d}+\dfrac{c+b}{a+d}=\dfrac{c+d}{a+b}=\dfrac{a+d}{c+b}\)
d) \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\) Tính: \(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
cho a,b,c là các số hữu tỉ khác 0 thỏa mãn:
\(\dfrac{a+b-2c}{c}=\dfrac{c+a-2b}{b}=\dfrac{b+c-2a}{a}\)
Tính giá trị của biểu thức
A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho a.b.c khác 0 và \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính P = \(\left(1+\dfrac{b}{a}\right).\left(1+\dfrac{c}{b}\right).\left(1+\dfrac{a}{c}\right)\)