Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sengoku

cho a,b,c dương và a+b+c=3

CMR: \(\sqrt{3a+\frac{1}{b}}+\sqrt{3b+\frac{1}{c}}+\sqrt{3c+\frac{1}{a}}\) ≥6

Trung Nguyen
24 tháng 2 2020 lúc 23:23

Theo bđt Mincopxki:

\(VT\ge\sqrt{3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2+\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^2}\ge\sqrt{3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2+\left[\frac{9}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}\right]^2}\)

Sử dụng bđt AM-GM ta cm được:\(\sqrt{a}+\sqrt{b}+\sqrt{c}\le3\)

bđt cần cm\(\Leftrightarrow3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2+\frac{81}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}\ge36\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2+\frac{27}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}\ge12\)

Đặt \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=x\rightarrow0< x\le9\)

Ta cần CM: \(x+\frac{27}{x}\ge12\)

\(VT\ge x+\frac{81}{x}-\frac{54}{x}\ge2\sqrt{81}-\frac{54}{9}=12\left(đpcm\right)\)

Dấu bằng xảy ra khi a=b=c=1

Khách vãng lai đã xóa