a: Xét ΔCBM và ΔCKM có
góc BCM=góc KCM
CM chung
góc BMC=góc KMC
DO đo; ΔCBM=ΔCKM
=>CB=CK
=>ΔCBK cân tại C
a: Xét ΔCBM và ΔCKM có
góc BCM=góc KCM
CM chung
góc BMC=góc KMC
DO đo; ΔCBM=ΔCKM
=>CB=CK
=>ΔCBK cân tại C
Cho tam giác ABC có AB < AC. Tia phân giác của góc A cắt BC tại I. Trên cạnh AC lấy điểm D sao cho AD = AB.
a. Chứng minh BI = DI
b. Gọi K là giao điểm của Di và tia AB. Chứng minh tam giác BKI = tam giác DCI
c. Kẻ BH vuông góc với KC. Chứng minh BH song song AI.
Cho tam giác ABC có góc A = 90°, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D. Kéo dài ED cắt tia BA tại K. a) Cho BC = 10 cm, AB = 6cm. Hãy tính AC. b) Chứng minh : DA = DE. c) Chúng minh rằng: tam giác DKC là tam giác cân.
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
(mng giải giúp em tới bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác ạ, cảm ơn mng nhiều)
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE.
a) Chứng minh ADB = AEC
b) Chứng minh AK là tia phân giác của góc A.
c) Chứng minh KBC cân.
d) Chứng minh ADE cân e)Gọi H là giao điểm AK và BC. Chứng minh AH vuông góc BC; KH là phân giác góc BKC
Cho tam giác ABC có AC > AB. Trên cạnh AC lấy điểm D sao cho AD = AB. Kẻ AE là tia phân giác của góc A. Chứng minh rằng: a) Tam giác ABE = tam giác ADE b) Tạm giác BED là tâm giác cân. c) Góc ADE > góc C
Cho Tam Giác ABC vuông tại A, đường phân giác của góc B cắt AC tại D.
Vẽ DH vuông góc với DC
a) Chứng minh: Tam giác ABD=HBD
b) Trên tia đối của AB lấy điểm K sao cho AK = HC. Chứng minh ba điểm K, D, H thẳng hàng.
Câu 5. Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác góc A (M ∈ BC). Trên cạnh AC lấy điểm N sao cho AB = AN.
a) Chứng minh ∆ABM = ∆ANM.
b) Chứng minh góc BAC= góc CMN