a) Xét \(\Delta AHB,\Delta ADH\) có
\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AHB}=\widehat{ADH}=90^o\end{matrix}\right.\)
=> \(\Delta AHB\sim\Delta ADH\left(g.g\right)\) (*)
Xét \(\Delta AHC,\Delta AEH\) có :
\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AHC}=\widehat{AEH}=90^o\end{matrix}\right.\)
=> \(\Delta AHC\sim\Delta AEH\left(g.g\right)\) (**)
b) Từ (*) suy ra : \(\dfrac{AH}{AD}=\dfrac{AB}{AH}=>AH^2=AD.AB\left(1\right)\)
Từ (**) suy ra : \(\dfrac{AH}{AE}=\dfrac{AC}{AH}=>AH^2=AE.AD\left(2\right)\)
Thấy (1) và (2) có :
\(AD.AB=AE.AC\left(=AH^2\right)\)