Ta có :\(\dfrac{a^3+b^3}{a^3+c^3}=\dfrac{a+b}{a+c}\)
<=> \(\dfrac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+b^2\right)}\)=\(\dfrac{a+b}{a+c}\)
<=>\(a^2-ab+b^2=a^2-ac+c^2\)
<=>\(-ab+b^2=-ac+c^2\)
<=>\(-ab+ac=c^2-b^2\)
<=> \(a\left(c-b\right)=\left(c-b\right)\left(c+b\right)\)
<=> \(a=b+c\) (đúng với gt)