a: BC=5cm
b: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
nên AIHK là hình chữ nhật
a: BC=5cm
b: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
nên AIHK là hình chữ nhật
Cho tam giác ABC vuông tại A đường cao AH.Gọi D là điểm đối xứng với H qua AC.CHứng minh:
a,D đối xứng với E qua A
b,TAm giác DHE vuông
c,tứ giác BDEC là hình thang vuông
d,BC=BD+CE
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.
a. Chứng minh điểm E đối xứng với điểm M qua AB
b. Các tứ giác AEMC; AEBM là hình gì? Vì sao?
c. Cho BC = 4cm. Tính chu vi tứ giác AEBM?
Cho tam giác ABC vuông tại A có đường cao AH, AB=6cm,AC=8cm . Gọi D và E lần lượt là hình chiếu vuông góc của H lên AB và AC. Gọi I, K lần lượt là trung điểm của HB, HC.
a) Chứng minh tứ giác ADHE là hình chữ nhật
b) Tính độ dài các đoạn AH, BH, CH
c) Chứng minh tứ giác DEKI là hình thang vuông và tính diện tích.
d) Tính diện tích hình chữ nhật ADHE
Cho tam giác ABC cân tại A, AH là đường trung tuyến. Gọi O là trung điểm của cạnh AC a. Chứng minh tứ giác ABOH là hình tháng b. K là điểm đối xứng với H qua O. Chứng minh tứ giác AHCK là hình chữ nhật.
Cho tam giác nhọn ABC, trực tâm H, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM, cắt AB,AC theo thứ tự ở E,F
1, Trên tia đối của tia HC lấy điểm D sao cho HD = HC. CM: E là trực tâm của tam giác BDH
2, CM: HE = HF
Cho tam giác nhọn ABC, trực tâm H, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM, cắt AB,AC theo thứ tự ở E,F
1, Trên tia đối của tia HC lấy điểm D sao cho HD = HC. CM: E là trực tâm của tam giác BDH
2, CM: HE = HF
Help T.T
Cho tam giác nhọn ABC, trực tâm H, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM, cắt AB,AC theo thứ tự ở E,F
1, Trên tia đối của tia HC lấy điểm D sao cho HD = HC. CM: E là trực tâm của tam giác BDH
2, CM: HE = HF
Cho tam giác ABC có đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D. a) Chứng minh tứ giác AEBM là hình bình hành. b) Gọi I là trung điểm của AM. Chứng minh điểm E đối xứng với C qua I.
B1/ Cho hình thang ABCD, có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng AC là tai phân giác của góc C.
B2/ Cho Δ ABC cân tại A. Trên cạnh bên AB, AC lấy các điểm M, N sao cho BM=CN.
a/ CM tứ giác BMNC là hình thang cân.
b/ Tính các góc của tứ giác BMNC biết rằng góc A= 40.
B3/ Cho Δ ABC cân tại A. Trên tia đối AC lấy điểm D, trên tia đối của AB lấy điểm E sao cho AD=AE. CM tứ giác BDEC là hình thang cân.
B4/ Cho Δ ABC vuông tại A, đường cao AH. Trên BC lấy điểm M sao cho CM=CA. Đường thẳng đi qua M và song song với CA cắt AB tại I
a/ Tứ giác ACMI là hình gì?
b/ CM AB+AC<AH+BC