Cho a,b,c >0 thỏa mãn \(a+b+c=\sqrt{6063}\):
Tìm GTLN của biểu thức :
\(P=\dfrac{2a}{\sqrt{2a^2+2021}}+\dfrac{2b}{\sqrt{2b^2+2021}}+\dfrac{2c}{\sqrt{2c^2+2021}}\)
Tìm giá trị nhỏ nhất của biểu thức:
a,A=\(\dfrac{x+1}{\sqrt{x}-2}\) với x>4
b,B=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\) với a,b,c>0 và abc=1
cho a,b,c>0 và a+b+c≤\(\dfrac{3}{2}\). Timg min Q=\(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
Cho ba số thực dương a,b,c . Chứng minh : \(\dfrac{2+6a+3b+6\sqrt{2bc}}{2a+b+2\sqrt{2bc}}\) ≥ \(\dfrac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)
cho các số thực a,b,c không âm .Chứng minh:
\(\dfrac{4a}{a+b}+\dfrac{4b}{b+c}+\dfrac{4c}{c+a}+\dfrac{ab^2+bc^2+ca^2+abc}{a^2b+b^2c+c^2a+abc}\ge7\)
giúp với :(((
cho 3 số dương a,b,c thảo mãn abc =1 . chứng minh
\(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Cho ba số dương a,b,c thỏa mãn abc = 1. Chứng minh rằng :
\(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\) ≤ \(\dfrac{1}{2}\)
Cho a, b , c là những số hữu tỉ khác 0 và a= b+c
CMR: \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là 1 số hữu tỉ
Các bạn chỉ mình cách giải này với mình chưa hiểu:
Ta có: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}-\dfrac{1}{bc}\right)\)
+ Bước này Các bạn chỉ mình vế bên phải làm sao biến đổi ra được vậy?
\(=\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2.\left(\dfrac{c+b-a}{abc}\right)=\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2\)
+ Bước này các bạn chỉ mình chỗ \(2\left(\dfrac{c+b-a}{abc}\right)\)
+ Và tại sao vế bên trái dấu bằng thứ 2 cái này cộng vào lại ra (1/a -1 /b -1/c ) ^2 vậy?
Cminh với a,b,c dương
\(\dfrac{2a}{b+c}\)+\(\dfrac{2b}{a+c}\)+\(\dfrac{2c}{a+b}\)+\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\) ≥ 4