Từ giả thiết ta có: \(1=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\)
Áp dụng BĐT AM - GM:
\(P=\frac{\sqrt{3}}{2}.\sqrt{\frac{4}{3}.a\left(a+bc\right)}+\frac{\sqrt{3}}{2}.\sqrt{\frac{4}{3}.b\left(b+ca\right)}+\frac{\sqrt{3}}{2}.\sqrt{\frac{4}{3}.c\left(c+ab\right)}+9\sqrt{abc}\)\(\le\frac{\sqrt{3}}{2}.\left(\frac{\frac{7}{3}a+bc+\frac{7}{3}b+ca+\frac{7}{3}c+ab}{2}\right)+9\sqrt{abc}\)
\(=\frac{\sqrt{3}}{2}.\left[\frac{\frac{7}{3}\left(a+b+c\right)+ab+bc+ca}{2}\right]+9\sqrt{abc}\)
\(=\frac{\sqrt{3}}{2}.\left(\frac{7}{6}+\frac{ab+bc+ca}{2}\right)+9\sqrt{abc}\)
Áp dụng BĐT quen thuộc \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
Khi đó: \(P\le\frac{\sqrt{3}}{2}.\left(\frac{7}{6}+\frac{\frac{1}{3}}{2}\right)+9\sqrt{\frac{1}{27}}=\frac{5\sqrt{3}}{3}\)
\(\Rightarrow min_P=\frac{5\sqrt{3}}{3}\Leftrightarrow a=b=c=\frac{1}{3}\)