\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Bài 1:Cho a,b,c là các số dương thỏa mãn điều kiện:a+b+c+ab+bc+ca=9.chứng minh rằng
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge5\)
Bài 2: Tìm cặp số (x;y) thỏa mãn:
\(x+\sqrt{2-x^2}=4y^2+4y+3\)
Bài 3:Cho các số thực dương x;y;z thỏa mãn x+y+z=4.chứng minh rằng:
\(\frac{1}{xy}+\frac{1}{xz}\ge1\)
Cho 3 số dương a,b,c thỏa mãn \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1\)
Chứng minh:
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}\)
Bài 5.
a, Chứng minh (x + y + z)2 ≥ 3(xy + yz + xz)
b, Với a,b,c > 0 thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của Q = \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)
1)tính : B = \(\sqrt{4+2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
2)Giải pt : \(\frac{10}{X^2-4}+\frac{1}{2-X}=1\)
3) Cho pt: \(mx^2-5x-\left(m+5\right)=0\)
a) giải pt khi m=5
b) chứng minh pt luôn có nghiệm với mọi m
c) Tính m để pt có 2 nghiện thõa mãn : \(10x_1x_2-3\left(x_1^2+x_2^2\right)=0\)
Cho a > b > c > 0 và a2 + b2 + c2 = 1
Chứng minh rằng \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\)
Cho a,b,c>0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1980\)
Chứng minh rằng: \(\dfrac{\sqrt{b^2+2a^2}}{ab}+\dfrac{\sqrt{c^2+2b^2}}{bc}+\dfrac{\sqrt{a^2+2c^2}}{ac}\ge1980\sqrt{3}\)
Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\)
Xác định hệ số a,b trong mỗi trường hợp sau:
a.(d) đi qua A(-1;4);B(2;-3)
b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3
c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\)
d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1
e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1
f.(d) có hệ số góc bằng 2 và đi qua điểm nằm trên đường thẳng y=2x-3 có tung độ bằng 1
Bài 2:
a)Tìm điểm cố định của các đường thẳng sau:
\(y=mx-2m-1\)
\(y=mx+m-1\)
y=(m+1)x+2m-3
b) Chứng minh đường thẳng \(y=\left(m-1\right)x-2m+3\) luôn đi qua 1 điểm cố định thuộc (P):y=\(\frac{1}{4}x^2\)
c)Chứng minh đường thẳng y=2mx+1-m luôn đi qua 1 điểm cố định thuộc (P) y=\(4x^2\)
các bạn giúp mình giải đề này với!
1.cho 2 bt:\(A=\frac{x-\sqrt{x}}{2-\sqrt{x}}\) và B=\(\frac{x+3}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\)
đặt P=A.B,chứng minh:P<\(\frac{1}{3}\)
2.cho hpt:\(\left\{{}\begin{matrix}x-my=1\\mx-y=1\end{matrix}\right.\)
chứng minh rằng hpt trên luôn có nghiệm d/n (x,y)với mọi m và tìm nghiệm đó theo m.
3cho pt: \(^{x^2+2\left(m-1\right)-4=0}\)
tìm m đẻ pt có 2 nghiệm đều là số nguyên.
Chứng minh rằng :
\(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}>\frac{9}{4}\)