S=\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)=1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{ab}=1+\dfrac{a+b}{ab}+\dfrac{1}{ab}=1+\dfrac{1}{ab}+\dfrac{1}{ab}=1+\dfrac{2}{ab}\)
Áp dụng bất đẳng thức Cô-si cho 2 số dương ta có: \(a^2+b^2\ge2ab\Leftrightarrow a^2+2ab+b^2\ge4ab\\ \Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow1\ge4ab\Leftrightarrow ab\le\dfrac{1}{4}\\ \Leftrightarrow\dfrac{1}{ab}\ge4\)
\(\Rightarrow1+\dfrac{2}{ab}\ge1+2.4=9\)
Đảng thức xảy ra khi a=b \(\Rightarrow a=b=\dfrac{1}{2}\)
Vậy GTNN của S=9 khi a=b=1/2