Lời giải:
$a^2+b^2=a+b$
$\Rightarrow (a+b)^2-(a+b)=2ab\geq 0$
$\Rightarrow a+b\geq 1$. Do đó:
$S=\frac{a}{a+1}+\frac{b}{b+1}=\frac{2ab+a+b}{ab+a+b+1}\geq \frac{\frac{ab}{2}+\frac{a+b+1}{2}}{ab+a+b+1}=\frac{1}{2}$
Vậy GTNN của $S$ là $\frac{1}{2}$. Dấu "=" xảy ra khi $(a,b)=(0,1)$ và hoán vị.