Bài 1:Cho A=\(\frac{3x^{2^{ }}+3}{x^3-x^2+x-1}\)
a, Tìm điều kiện xác định
b, Rút gọn A
c, Tìm x∈Z để A∈Z
Bài 2: Chứng minh rằng: \(\frac{x}{x-y}-\frac{x^3-xy^2}{x^2+y^2}.\left(\frac{x}{x^2-2xy+y^2}-\frac{y}{x^2-y^2}\right)=-1\)
Bài 3: Cho P=\(\frac{1-a^2}{1+b}.\frac{1-b^2}{a^2+a}.\left(1+\frac{a}{1-a}\right)\)
a, Rút gọn P
b, Tìm điều kiện xác định của P
cho a,b,c >0 và a+b+c=1
chứng mỉnh rằng P=\(\frac{9}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2}\ge\frac{39}{2}\)
Mọi người giúp em bài này với ạ
Em cảm ơn ạ
Cho a+b+c=1
Chứng minh: \(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+abc-1}=\frac{bc+ab+ac+8}{\left(a-2\right)\left(b-2\right)\left(c-2\right)}\)
Với a,b,c >0.Chứng minh:
\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho \(\frac{a\left(c-b\right)}{b-c}+\frac{b\left(a-c\right)}{c-a}+\frac{c\left(b-a\right)}{a-b}=3\)
CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Rút gọn các biểu thức sau:
a) \(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)
b) \(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+4xy+y^2}{16x}\)
cho a,b >0 và a+b\(\le\)4
chứng minh rằng C=\(\frac{1}{a^2+b^2}+\frac{25}{ab}+ab\ge\)\(\frac{83}{8}\)
1.Cho biểu thức C=\(\frac{x+2}{x^2+x+1}-\frac{2}{x-1}-\frac{2x^2+4}{1-x^3}\)
a, Rút gọn C
b,So sánh C và \(\frac{1}{3}\)
2.Cho biểu thức D=\(\frac{3x}{x-3}-\frac{8x+3}{2x+1}-\frac{70}{2x^2-5x-3}\)
a, Rút gọn D
b, Tính giá trị của D biết |x+3|=7
c, Tìm x nguyên để D nguyên
3.Cho biểu thức E =\(\frac{x-1}{2}:\left(\frac{x^2+2}{x^3-1}-\frac{x}{x^2+x+1}+\frac{1}{1-x}\right)\)
a, Rút gọn E
b, Chứng minh rằng E> 0 với mọi x khác 1
C, Tìm giá trị nhỏ nhất của E
cho a,b,c > 0 và a+b+c\(\le3\)
chứng minh rằng B=\(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ac}\ge670\)