Cho a, b, là số hữu tỉ thỏa mãn: \(\left(a^2+b^2-2\right).\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\). CM: \(\sqrt{1+ab}\) là số hữu tỉ
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Cho số thực a, b không âm thỏa mãn a2+b2≤2
Tìm giá trị lớn nhất của biểu thức: C=\(\sqrt{a\left(29a+3b\right)}+\sqrt{b\left(29b+3a\right)}\)
Cho a,b,c là một số hữu tỉ và đôi một khác nhau chứng minh
A=\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữu tỉ
Cho a, b là 2 số hữu tỉ khác 0 thỏa mãn \(a^3+b^3=2a^2b^2\)
Chứng minh\(\sqrt{1-\frac{1}{ab}}\) là số hữu tỉ
1.Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{x-2018}-\sqrt{y-2019}=1\\\sqrt{y-2018}-\sqrt{x-2019}=1\end{matrix}\right.\)
2. Cho a,b là các số hữu tỉ thỏa mãn \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)
CMR: \(\sqrt{1+ab}\) là một số hữu tỉ
Help me!!!!Please!!!!