Lời giải:
Gọi $d$ là ước chung lớn nhất của $a,b$
Khi đó, đặt \(\left\{\begin{matrix} a=dx\\ b=dy\end{matrix}\right.(x,y)=1\)
Ta có: \(ab(a+b)\vdots a^2+ab+b^2\)
\(\Leftrightarrow dxdy(dx+dy)\vdots (dx)^2+dxdy+(dy)^2\)
\(\Leftrightarrow dxy(x+y)\vdots x^2+xy+y^2\)
Do $x,y$ nguyên tố cùng nhau nên :
\((x,x^2+xy+y^2)= (y,x^2+xy+y^2)=(x+y,x^2+xy+y^2)=1\)
Suy ra \(d\vdots x^2+xy+y^2\)
\(\Rightarrow d\geq x^2+xy+y^2\)
\(\Rightarrow d^3\geq a^2+ab+b^2\)
Mà với $a,b$ nguyên dương phân biệt thì \(a^2+ab+b^2\geq 3ab>ab\)
Do đó \(d^3>ab(1)\)
Mặt khác: $a,b$ nguyên dương phân biệt kéo theo $x,y$ nguyên dương phân biệt nên \(|x-y|\geq 1\)
\(\Rightarrow |a-b|=d|x-y|\geq d(2)\)
Từ \((1);(2)\Rightarrow |a-b|^3>ab\Rightarrow |a-b|>\sqrt[3]{ab}\)
Ta có đpcm.