Cho a,b,c là các số thực dương CMR : \(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
1.a,b,c là các số thực dương. CM \(\left(\dfrac{\sqrt{ab}}{\sqrt{a+b}}+\dfrac{\sqrt{bc}}{\sqrt{b+c}}\right)\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}\right)\le2\)
2. x,y là các số nguyên sao cho \(x^2-2xy-y^2\) ;\(xy-2y^2-x\) đều chia hết cho 5Chứng minh \(2x^2+y^2+2x+y\) cũng chia hết cho 5
3. cho \(a_1a_2...a_{50}\) là các số nguyên thoả mãn \(1\le a_1\le a_2...\le a_{50}\le50;a_1+a_2+...+a_{50}=100\) chứng minh rằng từ các số đã cho có thể chọn đc một vài số có tổng là 50
cho a,b là số nguyên dương lớn hơn 1. giả sử a^1945 +b^1945 và a^1954 +b^1954 đều chia hết cho 2001. cmr a,b đều chia hết cho 2001
Cho a,b,c là ba số dương thỏa mãn: a+b+c=4
CMR: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(abc\right)^{^3}\)
Nhờ các cao thủ sol bài này :>>>>
Cho các số thực dương a,b,c. CMR:
\(\frac{a+b}{5\left(a+c\right)+31b}+\frac{b+c}{5\left(b+a\right)+31c}+\frac{c+a}{5\left(c+b\right)+31a}\ge\frac{6}{41}\)
P/s: SOS
Cho a,b,c là các số thực dương. CMR \(a^2+b^2+c^2+abc+4\ge2\left(ab+bc+ac\right)\)
Cho a,b,c dương và abc=1
CMR: \(\frac{a^4}{2\left(b+c\right)^2}+\frac{b^4}{2\left(a+c\right)^2}+\frac{c^4}{2\left(a+b\right)^2}+\frac{1}{c^2\left(a+c\right)\left(a+b\right)}+\frac{1}{b^2\left(a+b\right)\left(b+c\right)}+\frac{1}{a^2\left(a+c\right)\left(a+b\right)}\ge\frac{1}{8}\)
cho a,b,c là các số thực dương tùy ý.Cmr:
\(a+\sqrt{ab}+\sqrt[3]{abc}\ge\dfrac{4}{3}\left(a+b+c\right)\)
Cho a,b,c là các số thực dương thỏa mãn:\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\).
1,Tính a+b+c ,biết rằng ab+bc+ca=9
2,CMR nếu c≥a, c≥b thì c≥a+b