Biểu thức này chỉ có min, ko có max
Biểu thức này chỉ có min, ko có max
Với a,b>0. Tìm gtnn của \(P=\frac{a+b}{\sqrt{a\left(4a+5b\right)}+\sqrt{b\left(4b+5a\right)}}\)
Cho a, b là các số thực thoả mãn điều kiện:
\(\left(a+\sqrt{1+b^2}\right)\left(b+\sqrt{1+a^2}\right)=1\)
Tính giá trị của biểu thức: \(S=\left(a^3+b^3\right)\left(a^7b-5a^2b^4+21ab^5+73\right)+320\)
Cho a, b > 0. Chứng minh \(\frac{a^2+b^2}{\left(4a+4b\right)\left(3a+4b\right)}\ge\frac{1}{25}\)
Cho \(B=\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Rút gọn B
b, Tìm a để B<1
c, Cho \(a=19-8\sqrt{3}\). Tính B
d, Tìm a ∈ Z để b ∈ Z
e, Tìm giá trị lớn nhất của M
cho a,b>0 thỏa mãn \(\left(\sqrt{a}+2\right)\left(\sqrt{b}+2\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức T=\(\dfrac{a^4}{b}+\dfrac{b^4}{a}\)
Cho a,b,c>0 . Tìm giá trị nhỏ nhất của biểu thức : \(P=\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\)
Cho a,b là các số thực thỏa mãn \(a+b+4ab=4a^2+4b^2\).Tìm giá trị lớn nhất của biểu thức \(A=20\left(a^3+b^3\right)-6\left(a^2+b^2\right)+2013\)
Cho số thực a, b không âm thỏa mãn a2+b2≤2
Tìm giá trị lớn nhất của biểu thức: C=\(\sqrt{a\left(29a+3b\right)}+\sqrt{b\left(29b+3a\right)}\)
mn helpp mk cai
cho cac so duong a,b,c khac 0 TM: a+b+c=abc.tìm giá trị nhỏ nhất của bt \(\frac{a}{\sqrt{bc\left(1+A^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt[]{ab\left(1+c^2\right)}}\)
Cho các số thực dương a, b, c thỏa mãn ab+bc+ca=11. Tìm GTNN của P=\(\frac{5a+5b+2c}{\sqrt{12\left(a^2+11\right)}+\sqrt{12\left(b^2+11\right)}+\sqrt{c^2+11}}\)