\(A=\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\)
\(=2\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\dfrac{34}{ab}+\dfrac{17}{8}ab-\dfrac{1}{8}ab\)
\(\ge2.\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{34}{ab}.\dfrac{17}{8}ab}-\dfrac{1}{8}.\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow A\ge2.\dfrac{4}{\left(a+b\right)^2}+2.\dfrac{17}{2}-\dfrac{1}{8}.\dfrac{4^2}{4}\ge2.\dfrac{4}{4^2}+17-\dfrac{1}{2}\)
\(\Leftrightarrow A\ge\dfrac{1}{2}+17-\dfrac{1}{2}=17\)
Dấu "=" <=> a = b = 2