Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng trung

Cho biểu thức sau:\(B=\dfrac{\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}}{\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}}\)

A)Tìm ĐKXĐ của B và thu gọn B

B)Tại \(x=\dfrac{a^2+b^2}{2ab}\left(a>b>0\right)\),tính giá trị của B theo a,b 

C)Tìm tất cả các giá trị của x để B≤1

D)Tìm tất cả các giá trị của x để B=2

Akai Haruma
29 tháng 6 2021 lúc 0:13

Lời giải:

a. ĐKXĐ: $x>1$

\(B=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}=\frac{(\sqrt{x+1}+\sqrt{x-1})^2}{2}=x+\sqrt{x^2-1}\)

b.

\(B=\frac{a^2+b^2}{2ab}+\sqrt{\frac{a^2+2ab+b^2}{2ab}.\frac{a^2-2ab+b^2}{2ab}}\)

\(=\frac{a^2+b^2}{2ab}+\sqrt{\frac{(a+b)^2(a-b)^2}{(2ab)^2}}=\frac{a^2+b^2}{2ab}+\frac{|a-b||a+b|}{|2ab|}=\frac{a^2+b^2}{2ab}+\frac{a^2-b^2}{2ab}=\frac{a}{b}\)

c.

$B\leq 1\Leftrightarrow (x-1)+\sqrt{x^2-1}\leq 0$

$\Leftrightarrow \sqrt{x-1}(\sqrt{x-1}+\sqrt{x+1})\leq 0$

$\Leftrightarrow \sqrt{x-1}\leq 0$

Mà $\sqrt{x-1}>0$ với mọi $x<1$ nên điều này vô lý)

Vậy không tồn tại $x$ thỏa đkđb

 

Akai Haruma
29 tháng 6 2021 lúc 0:15

d.

$B=2\Leftrightarrow x+\sqrt{x^2-1}=2$

$\Leftrightarrow \sqrt{x^2-1}=2-x$

\(\Rightarrow \left\{\begin{matrix} 2-x\geq 0\\ x^2-1=(2-x)^2=x^2-4x+4\end{matrix}\right.\)

\(\Rightarrow x=\frac{5}{4}\)

Thử lại thấy thỏa mãn

Vậy......

 


Các câu hỏi tương tự
Lê Hương Giang
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Min Suga
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Nguyễn Hoàng trung
Xem chi tiết
nchdtt
Xem chi tiết
kieuvancuong
Xem chi tiết
Ly Ly
Xem chi tiết
Lê Hương Giang
Xem chi tiết