\(A=a^2+\dfrac{1}{16a^2}+b^2+\dfrac{1}{16b^2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
\(A\ge2\sqrt{\dfrac{a^2}{16a^2}}+2\sqrt{\dfrac{b^2}{16b^2}}+\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)
\(A\ge1+\dfrac{15}{32}\left(\dfrac{4}{a+b}\right)^2\ge1+\dfrac{15}{32}.4\)
Đúng 1
Bình luận (0)