\(P=\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}=\dfrac{a^2+b^2}{ab}+\dfrac{9ab}{a^2+b^2}\ge2\sqrt{\dfrac{\left(a^2+b^2\right).9ab}{ab\left(a^2+b^2\right)}}=6\)
Dấu "=" xảy ra khi \(a^2+b^2=3ab\)
(Đề bài sai, đây là cực trị ko xảy ra tại \(a=b\))
\(P=\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}=\dfrac{a^2+b^2}{ab}+\dfrac{9ab}{a^2+b^2}\ge2\sqrt{\dfrac{\left(a^2+b^2\right).9ab}{ab\left(a^2+b^2\right)}}=6\)
Dấu "=" xảy ra khi \(a^2+b^2=3ab\)
(Đề bài sai, đây là cực trị ko xảy ra tại \(a=b\))
Cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
Cho a,b,c nguyên dương thỏa mãn a^2+ab+b^2=c^2+cd+d^2 CMR a+b+c+d là hợp số
cho a, b, c là các số nguyên dương thỏa mãn \(ab+bc+ca+2\left(a+b+c\right)=8045\) và \(abc-a-b-c=-2\). tìm a+b+c
cho a,b,c là 3 số dương. CMR
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
cho a,b,c là số thực dương. Cmr: a/b^2+ bc+c^2 + b/c^2+ ca+a^2 + c/ a^2+ ab+ b^2 >= a/ b^2+ bc + c^2 + b/c^2+ca+a^2 + c/a^2+ab + b^2 >= a+b+c/ab+ bc + ca.
Cho các số thực dương a,b,c. CMR
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{c^2+b^2}+\frac{c^3}{a^2+c^2}\ge\frac{a+b+c}{2}\)
Cho a,b,c,d là các số thực dương
CMR : \(\dfrac{a+c}{b+a}+\dfrac{b+d}{b+c}+\dfrac{c+a}{c+d}+\dfrac{d+b}{d+a}\ge4\)
Cho hai số dương a,b thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}=2\) . Cmr \(a+b\ge2\)
Cho 3 số dương a,b,c thỏa mãn a+b+c=3. CMR
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)