Ta có α + β = π nên sinα = sin(π – α) = sinβ, suy ra sin2α = sin2β.
a) A = sin2α + cos2β = sin2β + cos2β = 1.
b) Ta có α + β = π nên cosα = – cos(π – α) = – cosβ.
Khi đó, B = (sinα + cosβ)2 + (cosα + sinβ)2
= (sinβ + cosβ)2 + (– cosβ + sinβ)2
= (sinβ + cosβ)2 + (sinβ – cosβ )2
= sin2β + 2sinβ cosβ + cos2β + sin2β – 2sinβ cosβ + cos2β
= 2(sin2β + cos2β)
= 2 . 1 = 2.