Lời giải:
Ta có:
$A^2=2x-3+5-2x+2\sqrt{(2x-3)(5-2x)}=2+2\sqrt{(2x-3)(5-2x)}\geq 2$
$\Leftrightarrow (A-\sqrt{2})(A+\sqrt{2})\geq 0$
Mà $A$ luôn không âm nên $A+\sqrt{2}\geq 0$
$\Rightarrow A-\sqrt{2}\geq 0\Rightarrow A\geq \sqrt{2}$
Vậy $A_{\min}=\sqrt{2}\Rightarrow b=\sqrt{2}$
Mặt khác: Áp dụng BĐT Bunhiacopxky:
$A^2\leq (2x-3+5-2x)(1+1)=4\Rightarrow A\leq 2$
Vậy $A_{\max}=2\Rightarrow a=2$
Khi đó: $a^2+b=2^2+\sqrt{2}=4+\sqrt{2}$