Để \(A\cup B=R\)
\(\Rightarrow m+1\ge-1\Rightarrow m\ge-2\)
Để \(A\cup B=R\)
\(\Rightarrow m+1\ge-1\Rightarrow m\ge-2\)
Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:
a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))
b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))
c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))
d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))
Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R
Bài 3:
a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)
b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)
với x+1\(\ge0\)dưới dạng tập số.
Bài 4:
Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)
Bài 5:
Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:
a, \(A\cap B\ne\varnothing\)
b, \(A\subset B\)
c, \(B\subset A\)
d, \(A\cap B=\varnothing\)
Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:
a, A\(\cap B\ne\varnothing\)
b, A\(\subset B\)
c,\(B\subset A\)
Cho các tập hợp \(A=\left(-3;-1\right)\cup\left(1;2\right);B=\left(-\infty;m\right);C=\left(2m;+\infty\right)\) tìm m để\(A\cap B\cap C\ne\varnothing\)
cho hai đoạn \(A=\left[a;a+2\right]\) và\(B=\left[b;b+1\right]\). Các số a, b thỏa mãn điều kiện gì để \(A\cap B\ne\varnothing\)
Câu 1: Cho A= {x ∈ R \(|\) \(\left|mx-3\right|\)= mx-3}, B= { x ∈ R \(|\) x2 - 4 = 0}. Tìm m để B \ A = B.
Câu 2: Cho CRA= [-3;\(\sqrt{6}\)], CRB= (-5;2) \(\cup\) (\(\sqrt{3}\);\(\sqrt{11}\)). Tìm A, B, A \(\cap\) B, A \(\cup\) B.
Giúp mình với ạ!!! Thank you!
Cho 2 tập hợp: A = (\(\left(-\infty;2\right)\cup\) [5; +\(\infty\)) và B = [m+1; \(\dfrac{3m+5}{2}\)]. Có bao nhiêu giá trị nguyên của m nhỏ hơn 10 để B \(\subset\) A
Cho A = ( âm vô cực , m + 1 ] ; B = ( âm 1 , dương vô cực ) . Tìm điều kiện của m để A giao B = R
Cho A=\(\left\{x\in R,\left|x-2\right|\le3\right\}\), B=\(\left\{x\in R,\frac{x+3}{2-x}\le0\right\}\). Xác định \(A\cap B\) ; \(A\cup B\) ; A\B ; B\A
a. Cho \(A\subset C\) và \(B\subset D\), chứng minh rằng \(\left(A\cup B\right)\subset\left(C\cup D\right)\)
b. Chứng minh rằng A\ \(\left(B\cap C\right)=\left(A\B\right)\cup\left(A\C\right)\)
c. Chứng minh rằng A\ \(\left(B\cup C\right)=\left(A\B\right)\cap\left(A\C\right)\)
1) cho các tập hợp sau : A=(m-1:m+3);B=(-1;1) vs m thuộc R. Định m sao cho:
a)\(A\subset B\) b)\(B\subset A\) c) \(A\cap B=\varnothing\)
2) Cho hai khoảng M= (m;6), N= (-5;2). tìm tất cả giá trị để \(M\cup N\) là một khoảng.
3) Cho A=(\(-\infty\);9a); B=(\(\frac{4}{a}\);\(+\infty\)) với a<0. Tìm điều kiện của a để \(A\cap B\ne\varnothing\)