1.Tính giá trị của biểu thức: A=\(\frac{\sqrt{x}+1}{\:\sqrt{x}-1}\) khi x=9
2.Cho \(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot \frac{\sqrt{x}+1}{\sqrt{x}-1}\) với x>0,x#1
a, Rút gọn P
b, Tính các giá trị của x để 2P=\(2\sqrt{x}+5\)
c,Với A,P là hai biểu thức ở trên,tìm x để \(\frac{A}{P}>2\)
a) Rút gọn biểu thức:\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{\sqrt{5}-5}{1-\sqrt{5}}\right):\frac{1}{\sqrt{2}-\sqrt{5}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B=\(x^2-x\sqrt{3}+1\)
1. Rút gọn biểu thức: A= \(\left(\sqrt{7-4\sqrt{3}}-\frac{\sqrt{15}-3}{\sqrt{3}}\right).\left(2+\sqrt{5}\right)\)
2. Cho biểu thức: M= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)( với x \(\ge\)0, x\(\ne\)1)
a, Rút gọn biểu thức M
b, Tìm x để M=2
3.
a, Rút gọn biểu thức: \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{20}-\sqrt{27}\)
b, Với a > 1, cho biểu thức P= \(\left(\frac{2}{\sqrt{a+1}}+\sqrt{a-1}\right):\left(\frac{2}{\sqrt{a^2-1}}+1\right)\)
Rút gọn biểu thức P, tìm giá trị của a để P = 2
Cho biểu thức: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) Với x>0;x#1;x#4
a,Rút gọn P
b,Với giá trị nào của x thì P=\(\frac{1}{4}\)
c,Tính giá trị của P tại x=\(4+2\sqrt{3}\)
A= \(\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
a) Rút gọn A
b) Tìm GTNN của A
bài 1, cho biểu thức: A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
a, Tìm điều kiện xác định, và rút gọn biểu thức A
b, Tính giá trị của A khi x=\(3-2\sqrt{2}\)
c, Tìm giá trị nhỏ nhất của A
bài 2, Cho biểu thức: A=\(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
a, Rút gọn biểu thức, ta được A=1 b, cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)tìm MAX A
P = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x+2}}{x+2\sqrt{x}+1}\right)\cdot\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a) rút gọn P
b) chứng minh rằng nếu 0<x<1 thì P<0
c) tìm giá trị lớn nhất của P
1, A=\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{2}{\sqrt{x}+1}\right):\frac{x-1}{\sqrt{x}}\) với x > 0
a, Rút gọn
b, Tìm x nguyên nhỏ nhất để A < 0
c, Tìm \(x\in Z\) để \(A\in Z\)
2, Rút gọn: \(\left(\frac{14}{\sqrt{14}}+\frac{\sqrt{12}+\sqrt{30}}{\sqrt{5}+\sqrt{2}}\right).\sqrt{5-\sqrt{21}}\)
3, Cho \(\left|x\right|< 1,\left|y\right|< 1\). Chứng minh \(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\)
Bạn nào giúp mk thứ 2 phải nộp rồi!!!
Cho \(M=\left(1-\frac{2\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}}{x+2\sqrt{x}+1}\right)\)
a. Tìm điều kiện x để M xác định
b. Rút gọn M