Cho a;b;c >0.
CMR : \(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{a^2+c^2}+\dfrac{c^2}{a^2+b^2}\ge\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
Cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
C/m \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Cho a, b, c > 0. Chứng minh: \(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a,b,c là độ dài 3 cạnh của tam giác có p = \(\dfrac{a+b+c}{2}\)
CMR : \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}>2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
a) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) (1) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\) (2)
Tính giá trị của biểu thức A\(=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
b) Biết a+b+c = 0
Tính: B\(=\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ac}{c^2+a^2-b^2}\)
Cho : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) và \(a+b+c=3abc\)
CMR : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=7\)
\(A=\dfrac{4bc-a^2}{bc+2a^2}\\ B=\dfrac{4ca-b^2}{ca+2b^2}\\ C=\dfrac{4ab-c^2}{ab+2c^2}\\ \)
CMR: nếu a+b+c=0 thì A.B.C=1
1) cho a+b+c=0 va a^2+b^2+c^2=16 tính a^4+b^4+c^4
2) cho a+b+c=0 va a^2+b^2+c^2=1981 tính a^4+b^4+c^4
3) cho a+b+c=4 va a^2+b^2+c^2=16 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) tính xy + yz + zx
4) cho a+b+c=30 va a^2+b^2+c^2=300 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)tính xy + yz + zx
Cho \(B=\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\). Rút gọn B, biết a+b+c=0