ta có : \(a^2+b^2+c^2+42=2a+8b+10c\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+42-2a-8b-10c=0\)
\(\Leftrightarrow\) \(\left(a^2-2a+1\right)+\left(b^2-8b+16\right)+\left(c^2-10c+25\right)=0\)
\(\Leftrightarrow\) \(\left(a-1\right)^2+\left(b-4\right)^2+\left(c-5\right)^2=0\)
mà \(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\forall a\\\left(b-4\right)^2\ge0\forall b\\\left(c-5\right)^2\ge0\forall c\end{matrix}\right.\)
\(\Rightarrow\) \(\left(a-1\right)^2+\left(b-4\right)^2+\left(c-5\right)^2=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-4\right)^2=0\\\left(c-5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a-1=0\\b-4=0\\c-5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=1\\b=4\\c=5\end{matrix}\right.\)
khi đó \(a+b+c=1+4+5=10\)