Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)
Cho các số thực dương a,b,c thỏa mãn: \(a+b+c=1\)
Chứng minh rằng:
\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
cho a,b,c là các số dương và a+b+c=1
chứng minh rằng \(\dfrac{ab}{ab+c}+\dfrac{bc}{bc+a}+\dfrac{ca}{ca+b}\ge\dfrac{3}{4}\)
Cho a, b, c > 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR:
\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ac}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)
Cho a,b,c là 3 só thực dương thỏa mãn : abc = 1
Tìm giá trị lớn nhất của biểu thức:
\(p=\dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\)
cho a,b,c là các số dương và a+b+c=1
chứng minh rằng \(\dfrac{ab}{ab+c}+\dfrac{bc}{bc+a}+\dfrac{ca}{ca+b}\ge\dfrac{3}{4}\)
Giải giúp mình với!!!!
1) cho a,b,c dương thỏa abc<1
C/M : \(\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}>1\)
2) cho a,b,c không âm thỏa a+b+c=1
CMR \(a^2+b^2+c^2\ge4\left(ab+bc+ca\right)-1\)
3)cho x,y,z,t thỏa \(x^2+y^2+z^2+t^2\le1\)
CMR :\(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\le2\)
cho a,b,c thỏa mãn a+b+c=3. cmr :
\(\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\ge a+b+c\)
Cho 3 số a, b, c. Biết \(a+b+c+ab+bc+ca=6abc\). CMR: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)