Ap1 dụng BĐT Cauchy cho 2 số dương, ta có: \(a+b\ge2\sqrt{ab}\) ( Dấu = xảy ra khi a = b)
Suy ra:
\(a^2+1\ge2a\)
\(b^2+4\ge4b\)
\(c^2+9\ge6c\)
Suy ra:
\(\left(a^2+1\right)\left(b^2+4\right)\left(c^2+9\right)\ge2a.4b.6c=48abc\)
Dấu "=" xảy ra khi: a = 1 ; b = 2; c = 3
Suy ra:
\(\dfrac{a^3+b^3+c^3}{\left(a+b+c\right)^2}=\dfrac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=1\)