Violympic toán 8

 nguyễn hà

cho a, b, c là các độ dài thỏa mãn: \(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}>1\)

CM rằng: a, b, c là các cạnh của tam giác

Khôi Bùi
7 tháng 4 2019 lúc 15:11

CM theo chiều ngược lại , nếu a ; b ; c là 3 cạnh tam giác

thì tổng các phân thức trên > 1 ( 1 )

\(\frac{a^2+b^2-c^2}{2ab}+1=\frac{\left(a+b\right)^2-c^2}{2ab}\) ; \(\frac{b^2+c^2-a^2}{2bc}-1=\frac{\left(b-c\right)^2-a^2}{2bc}\) ;

\(\frac{c^2+a^2-b^2}{2ac}-1=\frac{\left(c-a\right)^2-b^2}{2ac}\)

\(\Rightarrow\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}-1=\frac{\left(a+b\right)^2-c^2}{2ab}+\frac{\left(b-c\right)^2-a^2}{2bc}+\frac{\left(c-a\right)^2-b^2}{2ac}\)

\(=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}+\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc}+\frac{\left(c-a-b\right)\left(c-a+b\right)}{2ac}\)

\(=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}+\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc}+\frac{\left(a+b-c\right)\left(a-c-b\right)}{2ac}\)

\(=\left(a+b-c\right)\left(\frac{a+b+c}{2ab}+\frac{b-c-a}{2bc}+\frac{a-c-b}{2ac}\right)\)

\(=\left(a+b-c\right)\left[\frac{\left(a+b+c\right)c+\left(b-c-a\right)a+\left(a-c-b\right)b}{2abc}\right]\)

\(=\left(a+b-c\right)\left[\frac{ac+bc+c^2+ab-ac-a^2+ab-bc-b^2}{2abc}\right]\)

\(=\left(a+b-c\right)\left[\frac{c^2-\left(a-b\right)^2}{2abc}\right]\)

\(=\left(a+b-c\right).\frac{\left(c-a+b\right)\left(c+a-b\right)}{2abc}\) ( * )

Vì a ; b ; c là 3 cạnh của tam giác nên biểu thức (*) luôn > 0

\(\Rightarrow\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}-1>0\)

\(\Rightarrow\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}>1\left(đpcm\right)\) ( 2 )

Từ ( 1 ) ; ( 2 ) => a ; b ; c là 3 cạnh của 1 tam giác

Bình luận (0)

Các câu hỏi tương tự
Thùy Linh
Xem chi tiết
Hạ Vy
Xem chi tiết
Đinh Tuấn Việt
Xem chi tiết
Mạnh Dũng
Xem chi tiết
Hạ Vy
Xem chi tiết
CCDT
Xem chi tiết
linh nguyen
Xem chi tiết
Linh Nhi
Xem chi tiết
Nguyễn Thu Huyền
Xem chi tiết