Cho biết: \(\dfrac{a+b-c}{ab}-\dfrac{b+c-a}{bc}-\dfrac{a+c-b}{ac}=0\). CMR trong 3 phân thức ở vế trái, có ít nhất một phân thức bằng 0
Cho a, b, c khác nhau đôi một và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). Rút gọn các biểu thức:
a) M= \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)
Cho các số a, b, c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(S=\dfrac{2013a^2-2014}{a^2+2bc}+\dfrac{2013b^2-2014}{b^2+2ca}+\dfrac{2013c^2-2014}{c^2+2ab}\)
Cho biểu thức: \(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}\)
a, Nếu a,b,c là độ dài ba cạnh của tam giác thì M>1
b, Nếu M=1 thì hai trong ba phân thức đã cho của biểu thức M bằng 1, phân thức còn lại bằng -1
cho a,b,c là 3 số đôi một khác nhau thỏa mãn ab+bc+ca=0
Rút gọn biểu thức A=\(^{ }\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
Cho 3 phân thức: \(\dfrac{a-b}{ab+1};\dfrac{b-c}{bc+1};\dfrac{c-a}{ca+1}\). CMR: Tổng của 3 phân thức này bằng tích của chúng
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Cho biết \(\dfrac{a+b-c}{ab}-\dfrac{b+c-a}{bc}-\dfrac{a+c-b}{ac}=0\) . Chứng minh rằng trong ba phân thức ở vế trái, có ít nhất một phân thức bằng 0