Cho a, b, c khác nhau đôi một và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). Rút gọn các biểu thức:
a) M= \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)
Cho 3 số phân biệt a,b,c thỏa mãn a,b,c khác , 1/a +1/b+1/c=0
Rút gọn biểu thức A= \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\)
Cho a,b,c>0. CM: \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge1\)
Cho 3 số phân biệt a,b,c từng đôi một khác nhau thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn biểu thức:
\(\:N=\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+2ab}\)
cho a,b,c đôi một khác nhau thõa mãn ab+bc+ac=1
Tính giá trị biểu thức :
a)A\=\(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b)B=\(\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
Cho a,b,c thỏa mãn a + b + c = \(\frac{1}{2}\) và (a + b)(b + c)(c + a) khác 0
Tính giá trị của P = \(\frac{2ab+c}{\left(a+b\right)^2}.\frac{2bc+a}{\left(b+c\right)^2}.\frac{2ca+b}{\left(c+a\right)^2}\)
Rút gọn và tính giá trị của các biểu thức:
a)\(\frac{16a^2-40ab}{8a^2-24ab}với\frac{a}{b}=\frac{10}{3}\)
b)\(\frac{1}{a}-\frac{1}{b+c}\)\(\left(1+\frac{b^2+c^2-a^2}{2bc}\right)\)
\(\frac{1}{a}+\frac{1}{b+c}\)
Cho a≠b≠c, a+b≠c và c2+2ab-2ac-2bc=0
Hãy rút gọn \(B=\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
Với \(a+b+c\ge1\) a, b, c >0
CMR: \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2bc}\ge9\)
Làm cách trâu bò nhất hộ em ạ, em đang tập làm Co si thoi, chỉ làm được mấy cách cơ bản thoi ạ, mong mấy pro giúp em~