Ta có:a2 = bc \(\Rightarrow\frac{a}{b}=\frac{c}{a}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{a^2}=\frac{a}{b}.\frac{c}{a}=\frac{c}{b}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{b^2}=\frac{c^2}{a^2}=\frac{a^2+c^2}{b^2+a^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{c}{b}\left(đpcm\right)\)
\(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\Leftrightarrow\frac{bc+c^2}{bc+b^2}=\frac{c}{b}\Leftrightarrow b^2c+bc^2=c^2b+cb^2\Leftrightarrow0=0\)
Ta có :a2 =bc và\(\frac{a^2+c^2}{b^2+a^2}\)
Thay vào có:\(\frac{bc+c^2}{b^2+bc}\)=\(\frac{c.\left(b+c\right)}{b.\left(b+c\right)}\)=\(\frac{c}{b}\) (điều phải chứng minh)
Từ a2 = bc => \(\frac{a^2+c^2}{b^2+a^2}=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\)